Estimation of initial size distribution of expiratory droplets by particle counters and evaporation model

Research background

The size distribution of expiratory droplets at the moment they exit mouth is important initial condition for an predicting their indoor transmission path.

However, due to limits of experimental setup, droplets can only be measured at a certain distance from mouth, where the initial size distribution may have changed due to evaporation and dispersal.

Objectives

This study aims to back-calculate the initial size distribution of coughed droplets at the moment they leave mouth by means of Optical Particle Sizer (OPS) [1] and evaporation model [2]. **Conceptual diagram**

Simulation Outline

Table 1 Calculation Condition

	+ + 60	Wall	No-slip, T	hermal insulation			
送風口		Inlet	23.1 °C; 34.0% RH; V = 0.1 m/s; Turbulence				
Z y			Intensity 5%;Length Scale 0.07L m				
x (0.0.0)		Exhaust	Size: $0.4 \times 0.4 \text{ m}^2$; Ps = 0				
150	40 cm	Surface	No-slip,	Convective heat	transfer		
150 cm	40 cm		coefficient: 23 W/m ²				
		Airflow	34 °C; 100% RH; Flow velocity: Fig 5				
Fig 3 Calculation domain		from	Area: Around 366 mm ² ;				
		mouth	Turbulence Intensity 10%; Length Scale				
			0.07L m				
5.4 $A = \pi a b$ \widehat{B} 10 Particle		Particle	Initial T = 34 °C; Initial V = 10 m/s				
	$ \vec{E} _{\geq 10}$	from	Initial Ø: 1,2,4,8,16,24,32,40 μm				
	/eloci	mouth	Initial component V_{water} : $V_{non-volatile} = 98.2$:				
-a 0 a			1.8; Non-volatile part: $\rho = 1000 \text{ kg/m}^3, \overline{M} =$				
21.6 mm			293 kg/kmol				
	Time (s)	Turbi	Ilanca	RANS Realizable k.	- s model		
Fig 4 Mouth Shape	Fig 5 Flow velocity	Mosh-division		Polyhodral moch & F	Prism Javor		
		Tota		Around 250 (
Dronlet evanoration model •		Soft		STAR-CCM + Vor 16.06			
		JUILWAIE		Flow in chamber 9t	adv stata		
Same as previous report [2]		Ti	me	Cough Instanty At -	-10-5 - 10-3 c		
				Cough. Onsteady Dt -	$-10^{\circ} - 10^{\circ} S$		

OPS Experim	ent	Numerical Analysis				
	Each size					
Size distribution at	Tem size	poral	Arriva at OPS	l time	Arrival at OPS	number / Initial
measuring point	varia	ation			numbe	er
Relationship between arrival size at OPS & initial size						
Backward calculation						
Initial size distribution of droplets						

Arrival time at OPS = Arrival time at each plane center point + Time to pass through the tube(0.71 s)

Simulation Results • Estimation

 \bullet

x = 1 cm	x = 1 cm	x = 1 cm	x = 1 cm
0.1	0.1	0.1	0.1
	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
-0.1	-0.1	-0.1	-0.1
-0.2 0 0.2	-0.2 0 0.2	-0.2 0 0.2	-0.2 0 0.2
x = 10 cm	x = 10 cm	x = 10 cm	x = 10 cm
0.1	0.1	0.1	0.1
	0 0 0 0 0 0	0 0 🚳 0 0	0 0 0 🚳 0 0
-0.1	-0.1	-0.1	-0.1
	-0.2 0 0.2	-0.2 0 0.2	-0.2 0 0.2
x = 20 cm	x = 20 cm	x = 20 cm	x = 20 cm
0.1	0.1	0.1	0.1
	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
-0.1	-0.1	-0.1	-0.1
-0.2 0 0.2	-0.2 0 0.2	-0.2 0 0.2	-0.2 0 0.2
x = 30 cm	x = 30 cm	x = 30 cm	x = 30 cm
01	0.1	0.1	0.1
	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
	-0.1	-0.1	-0.1
	-0.2 0 0.2	-0.2 0 0.2	-0.2 0 0.2
-0.2 0 0.2	x = 60 cm	x = 60 cm	x = 60 cm
x = 00 cm	0.1	01	0.1
			0 3 0 0 0 0

Conclusions Not all particles be can equilibrium considered in as when reaching OPS

calculated from data in Plane 10 cm is

Fig 11 Initial size distribution of backcalculated droplets

- Initial size distributions backlacksquarecalculated from each measuring point still differ
- In future, revision for evaporation • model is needed to obtain a more accurate initial size distribution

Reference:|1| 呉元錫. 大岡龍三. 菊本英紀. ト韻諶.人の呼吸器から噴出する飛沫の粒径分 (その1)呼吸・咳・会話の行動により発生するエアロゾル粒径の空間分 | 菊本英紀, 呉元錫, 人の呼吸器から噴出する飛沫の粒径分布に関する| 研究, (その3)蒸発による飛沫サイズの時間変化に関する数値解析, 空気調和・衛生工学 会大会学術講演論文集. (2022) 113-116.

Study on droplet size distribution ejected from the human respiratory system Part 4 Estimation of initial size distribution of expiratory droplets by particle counters and evaporation model

