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Cross-sensor domain adaptation (CSDA) for data-driven correction

of wind measurement around buildings using cup anemometers

Introduction: Data-driven correction fits the instantaneous cup anemometer (CA) samples to

ultrasonic anemometer (UA) samples by artificial neural networks (ANN).

◆ Aim: Improve the model generalization ability. Develop an accurate and low-cost sensor system.

◆ Problem-1 (Cross-sensor (CS) correction): due to the sensor health state or lifetime, the differences

in response between the multiple CAs below the 𝑈𝑠𝑡𝑎𝑟𝑡 can cause the correction error to increase.

◆ Problem-2 (Cross-condition correction): the differences in the inside-feature of wind speed

samples between different locations or measuring period can cause the correction error to increase.

⚫CSDA: an EMD-based preprocess
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Methodology: Ⅰ. EMD-based preprocess (for solving cross-sensor problem):
CSDA aligns the CA1・CA2 response below 𝑈𝑠𝑡𝑎𝑟𝑡 by decomposing their

samples, deleting high-frequency components, and extracting low-frequency

components. This filters the different short-term responses of CA1・CA2.
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑥 = 0.27
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5-a ANN models: mean relative errors of wind statistics 5-b CANN models: mean relative errors of wind statistics4 Differences in response between sensors below 𝑼𝒔𝒕𝒂𝒓𝒕 (0.5 m/s)

Result and conclusion:
◆ Fig. 4: The CSDA can reduce the distance between the probability density function of the weak wind speed response in the CS case.

◆ Fig. 5: The CSDA can suppress the correction error increase caused by the CS case in ANN or CANN models compared to the SS case.

◆ The correction effect of CSDA_CANN is superior to other baselines used. The existing database consisting of one CA and one UA

measurement in an open space can potentially correct multiple CAs of the same type at different locations around the buildings.
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(b) Conceptual Diagram of Agglomerative Clustering Process
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Ⅱ. Clustering-based domain adaptation (for solving cross-condition proble.):
In the CANN, the corrected CA samples are predicted using multiple ANN models trained from

divided source and target domain samples cluster by cluster. This multi-modeling method has a

higher generalization performance than single modeling method (ANN model) for transferring

the knowledge of the source domain toward the target domain to adapt the cross-location case.

Data: Two source (S) domain samples were collected at open space (OS), building side (BS) for two weeks with CA1・UA1. Target (T)

domain samples was collected at BS for three days with CA2・UA2. As for the correction, in the single-sensor (SS) case, the S_BS_CA2

was used to correct T_BS_CA2. In the CS case, S_OS_CA1 is expected to display a correction effect like S_BS_CA2 on T_BS_CA2.
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