Improving Accuracy of Airflow Measurement around Buildings
by Machine Learning

Cross-sensor domain adaptation (CSDA) for data-driven correction

of wind measurement around buildings using cup anemometers

‘* Introduction: Data-driven correction fits the instantaneous cup anemometer (CA) samples to
i

= i
/4 ;g‘i g ~ultrasonic anemometer (UA) samples by artificial neural networks (ANN).
‘ e € Aim: Improve the model generalization ability. Develop an accurate and low-cost sensor system.
€ Problem-1 (Cross-sensor (CS) correction): due to the sensor health state or lifetime, the differences
in response between the multiple CAs below the Ug;,,-+ can cause the correction error to increase.
T € Problem-2 (Cross-condition correction): the differences in the inside-feature of wind speed
eCAR " 1-b m““lple CAS samples between different locations or measuring period can cause the correction error to increase.

Data. Two source (S) domain samples were collected at open space (OS), building side (BS) for two weeks with CA1 - UAL. Target (T)
domain samples was collected at BS for three days with CA2 - UA2. As for the correction, 1n the single-sensor (SS) case, the S BS CA2
was used to correct T BS CAZ2. In the CS case, S_0OS_CA1 is expected to display a correction effect I|ke S BS CA2on T BS CA2.
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Methodology I EMD-based preprocess (for solving cross-sensor problem)

CSDA aligns the CA1 - CA2 response below Ug, by decomposing their
+ Ii: samples, deleting high-frequency components, and extracting low-frequency

components. This filters the different short-term responses of CA1 - CA2.
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¢ CSDA an EMD-based preprocess ! | .
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I1. Clustering-based domain adaptation (for solving cross-condition proble.):
In the CANN, the corrected CA samples are predicted using multiple ANN models trained from
divided source and target domain samples cluster by cluster. This multi-modeling method has a
higher generalization performance than single modeling method (ANN model) for transferring
the knowledge of the source domain toward the target domain to adapt the cross-location case.
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Result and conclusion:

€ Fig. 4: The CSDA can reduce the distance between the probability density function of the weak wind speed response in the CS case.

€ Fig. 5: The CSDA can suppress the correction error increase caused by the CS case in ANN or CANN models compared to the SS case.

€ The correction effect of CSDA CANN is superior to other baselines used. The existing database consisting of one CA and one UA
measurement 1n an open space can potentially correct multiple CAs of the same type at different locations around the buildings.
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