Promotion and control of natural ventilation using fluid diode

Part 2 Comparison study on the performance of two fluid diode plate shapes by CFD

Research aim

- To compare the performance of shape 1 (Optimized in our research) and shape 2 (Cao et al.)¹⁾
- To check the performance of airflow control when
 shape 1 or shape 2 was placed as an opening of a
 building model

Research method

 \square 2D CFD for obtaining the minor loss coeficient ζR and ζF of shape 1

Π RANS k-ω SST model

□ From left reverse flow

□ From right: forward flow

Shape of FDP and simulation results

shape 1 (a) and shape 2 (b)

parameter details Parameter shape 1 shape 2 H_1 (mm) 5.00 5.00

H ₂ (mm)	3.58	2.66
H (mm)	29.04	25.67
L (mm)	15.00	26.77
L _{sum} (mm)	63.02	107.82
Θ (rad)	$\frac{7}{6}\pi$	$\frac{13}{12}\pi$

Simulation results (Reynold number is 1802) A large pressure loss occurs in the reverse flow of shape 1, especially in the third and fourth loops.

 A little vortical flow is seen in the reverse flow of shape 2.

Small pressure loss occurs in
 the forward flow of both shape

Airflow control analysis in building

Using CFD

- **Π** RANS realizable k-ε 2-layer turbulence model
- Building model: 400*400*400 mm³ (opening: 100*100 mm²)
 Study case:

Forward opening	General window (considering the porosity of shape: 0.51*0.51 mm ²), shape 1, shape 2
Roof height velocity	3.0, 4.6, 6.2, 7.8 m/s

A pressure jump, corresponding to minor loss coefficient ζF or ζR, was created on the front opening to make the flow easy or difficult to pass through the room.

CFD simulation domain

Simulation results

Normalized concentration for comparing the performance in airflow control

$$\Box \ C_n = \frac{C}{C_o}, \quad (C_o = \frac{1 \times V}{v L_o^2})$$

Where, C_n denotes the normalized concentration (-); Cdenotes the indoor concentration (m3/s • ppm); V denotes the building volume (m³, Tracer gas was emitted uniformly in the room at an emission rate of 1 ppm/s); v denotes reference velocity at roof height (m/s); L_o denotes the length of opening (m).

1) Z. Cao et al., Novel fluid diode plate for use within ventilation system based on tesla structure, Build. Environ. 185 (2020)

