Benchmark of the lattice Boltzmann method for built wind environment (1)

Foundation of the lattice Boltzmann method

Lattice Boltzmann method is ...

- \succ Lattice Boltzmann method(LBM) simulates the fluid motion process by
 - assuming a collection of particles to be distribution functions
 - relying on collision-and-stream behavior of numerous molecules
- > LBM shows more promise in high-speed LES simulations for complex and large-scale urban flows
 - significantly simpler algorithm
 - appropriation of parallel computation nature

Theory of LBM

 \succ LBM is based on the mesoscopic lattice Boltzmann equation (LBE)

$$f_a(\mathbf{r} + \delta \mathbf{e}_a, t + \delta) - f_a(\mathbf{r}, t) = \Omega[f_a(\mathbf{r}, t)]$$

- Relaxation time schemes
 - Single relaxation time scheme (SRT)

$$\Omega[f_a(\mathbf{r},t)] = -\frac{1}{\tau} \left[f_a(\mathbf{r},t) - f_a^{eq}(\mathbf{r},t) \right]$$

Multi relaxation time scheme (MRT)

$$\Omega[f_a(\mathbf{r},t)] = -\mathbf{M}^{-1}\mathbf{S}\mathbf{M}[f_a(\mathbf{r},t) - f_a^{eq}(\mathbf{r},t)]$$

- f_a : distribution function for particle a
- f_a^{eq} : equilibrium distribution function for particle *a*
- : spatial position of the particle r
- : discrete velocity for particle *a* \mathbf{e}_a
- : time
- : discrete time step
- : collision function Ω

- : relaxation time
- M : matrix structured to transform distribution functions to moments
- M^{-1} : Inverse matrix of M
- : relaxation coefficient diagonal matrix S corresponding to M

Discrete velocity scheme

> D319 and D3Q27 discrete speed schemes are employed in the built environment

D3Q19 scheme

大岡研究室·菊本研究室

Ooka Lab., and Kikumoto Lab.

Large-eddy simulation in LBM

- LBM can be used with a large-eddy simulation (LBM-LES) model in built environment
- \succ Viscosity is constituted of the molecular viscosity v and the eddy viscosity v_t by Smagorinsky SGS model
 - $v_t = (c_k \Delta)^2 |\bar{S}|$ (eddy viscosity in the LES theory)
 - $v_{total} = e_s^2 (\tau_{total} 0.5) \delta$ (total viscosity in the LBM) theory stics speed on the lattice τ : relaxation time δ : discrete time step c_k : Smagorinsky constant Δ : filter width \bar{s} : strain tensor
- $\succ \tau_{total}$ substitutes the relaxation time τ in the LBE to implement the LES simulation

1/4

Benchmark of the lattice Boltzmann method for built wind environment (2)

Benchmark of LBM for the indoor isolated flow

Objective

- Implement simulations of 2D indoor isothermal flow using LBM and FVM with LES
 - benchmark LBM's accuracy •
 - compare the accuracy of the LBM and FVM ۲
- > Exam LBM's applicability in indoor airflow

Boundary conditions

Fig.1 Sketch of the indoor flow case

Table 1 Simulation conditions

Item	FVM-LES	LBM-LES			
Software	OpenFOAM	OpenLB			
Sub-grid scale model	standard Smagorinsky model ($C_s = 0.12$)				
Time discretization	Euler-implicit	-			
Space discretization	2 nd -order central	-			
	difference				
Lid B.C.	Uniform velocity boundary,				
Outlet B.C.	Velocity Gradient-zero, t=0.16 H				
Other B.C.	wall function	Bounce-back			
	(Spalding's law)	condition			

Fig. 3 Distribution of streamwise component of time-averaged velocity (left) and the standard deviation of fluctuating velocity (right) LBM simulates the physical flow and the experimental data in indoor flow like FVM.

2/4

大岡研究室・菊

Ooka Lab., and Kikumoto Lab.

Benchmark of the lattice Boltzmann method for built wind environment (3)

Benchmark of LBM for the outdoor isolated flow (part 1)

Objective

Implement simulations of flow around a high-rise building using LBM and FVM with LES to exam LBM's applicability in outdoor airflow

- verify the accuracy of the LBM and FVM
- compare different relaxation time and discrete velocity schemes •
- Compare computation speeds and parallel computation performances

Simulation target and case settings

Fig. 1 Sketch of the simulation domain

Table 1 Case Settings

Case Name	Calculation Method	Relaxation time scheme	Discrete velocity scheme	Mesh size
LBM_02_SRT_D3Q19	LBM-LES	SRT(BGK)	D3Q19	0.02m (1/8 b)
LBM_01_SRT_D3Q19		SRT(BGK)	D3Q19	0.01m (1/16 b)
LBM_01_SRT_D3Q27		SRT(BGK)	D3Q27	0.01m (1/16 b)
LBM_01_MRT_D3Q19		MRT	D3Q19	0.01m (1/16 b)
FVM_02	FVM-LES	-	-	0.02m (1/8 b)

 \succ LBM adequately simulates the physical flow features in outdoor flow like FVM.

3/4

大岡研究室・菊本研究室

Ooka Lab., and Kikumoto Lab.

Results of time-averaged scalar velocity

Fig. 2 Time-averaged scalar velocity of all cases

Benchmark of the lattice Boltzmann method for built wind environment (3) Benchmark of LBM for the outdoor isolated flow (part 2) **Computational speed Comparisons for velocity and turbulent kinetic energy** 12,800.00 6,400.00 3,200.00 1,600.00 Р q / 2 ~ 2 N 800.00 alarVelocity Exp 400.00 LBM 01 MRT D3Q19 200.00 LBM_01_MRT_D3Q1 LBM 01 SRT D3Q1 LBM_01_SRT_D3Q19 0 0.25 0.5 0 1 2 100.00 BM 02 SRT D3Q LBM 02 SRT D3Q ScalarVelocity / U, (k/U_{ref}^2) 32cores 16 cores 48cores 64 cores -1.0 -0.75 -0.5 -0.25 0.0 0.5 0.75 1.25 2.0 3.25 4.0 -1.0 -0.75 -0.5 -0.25 0.0 0.5 0.75 1.25 2.0 3.25 (1 node) (2 nodes) (3 nodes) (4 nodes) 40 x/b Core quantities x/b Fig. 3 Time-averaged scalar velocity (left) and turbulent kinetic energy (right) on the vertical section LBM_02_MRT_D3Q19 LBM_01_MRT_D3Q19 LBM_02_SRT_D3Q19 LBM_01_SRT_D3Q19 -- LBM 02 SRT D3Q27 LBM 01 SRT D3Q27 ---- FVM 02 ScalarVelocity Fig. 5 Normalized computation time of all cases O Exp ○ Exp - FVM 02 — FVM 02 -0.5--0.5 LBM 01 MRT_D3Q19 LBM_01_MRT_D3Q19 LBM's speed is larger than that of FVM LBM_01_SRT_D3Q19 LBM 01 SRT D3Q19 LBM_02_SRT_D3Q19 LBM_02_SRT_D3Q19 under the same result accuracy -1.0 **q / k** -1.0 р у/ 1.80 27 LBM's speed ratio of FVM -1.5 FVN 24 1.60 ---•--- FMV's parallel speedup FVM 0 0.25 0.5 0 1 2 LBM's parallel speedup 1.40 21 (k / U_{ref}² (ScalarVelocity / U_{ref}) ັວ 1.20 18 -2.0 -2.0 -0.75 -0.5 -0.25 0.0 -0.5 -0.25 0.0 0.5 0.75 3.25 0.5 0.75 1.25 3.25 1.25 2.0 4.0 2.0 4 (00.1 atio x/b 15 x/b 0.80 eed 0.60 Fig. 4 Time-averaged scalar velocity (left) and turbulent kinetic energy (right) on the horizontal plane at z/b = 1/8 12 9 SWB10.40 **Results of instantaneous velocity** 6 0.20 3 Roof (no-slip) 0.00 48 cores 64 cores 16 cores 32 cores (1 node) (4 nodes) (2 nodes) (3 nodes) Core quantities (Node quantities) Inlet Fig. 6 Parallel computational performance Target building Floor roughness

39.375 H

Ground (Wall function)

LBM's parallel computational performance is more significant than FVM

4/4