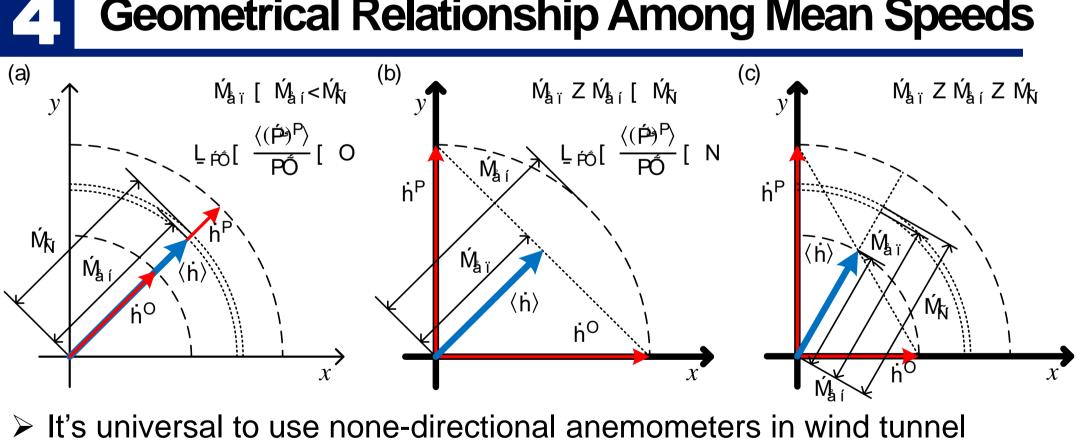
Study on consistency of "mean wind speed" in wind environment analyses

Research Objectives

- > There is inconformity in the definitions of "Mean Speed" of nonedirectional anemometers and RANS (Reynolds-averaged Navier-Stokes equations).
 - none-directional anemometers : mean value of instantaneous scalar velocities
 - RANS : scalar speed from the mean velocity vectors
- Research objectives
 - Part 1: mathematical analysis of the Relationship among the various mean wind speed
 - Part 2: Large-eddy simulation (LES) simulation of the wind • field around a building, and a quantitative valuation of the degree of inconsistency among various mean speeds

Definition of "Mean Speed"

Table 1 Definition equations of "Mean Speed"				
mean-vector speed $V_{\rm mv}$	$\boldsymbol{V}_{\mathrm{mv}} \equiv \ \langle \mathbf{u} \rangle\ = \left(\langle \mathbf{u} \rangle^{\mathrm{T}} \langle \mathbf{u} \rangle\right)^{0.5} = (2K)^{0.5}$			
mean speed $V_{\rm ms}$	$\boldsymbol{V}_{\rm ms} \equiv \langle \ \mathbf{u} \ \rangle = \langle s \rangle$			
effective speed V_{es}	$\boldsymbol{V}_{\text{es}} \equiv \langle \ \mathbf{u} \ ^2 \rangle^{0.5} = \langle s^2 \rangle^{0.5} = (2K + 2k)^{0.5}$			
Table 2 Simulation methods and available mean speeds				
		V _{mv}	V _{ms}	V _{es}
Wind tunnel experiment*			\bigcirc	
CFD (RANS)		\bigcirc		\bigcirc
CFD (LES)		\bigcirc	\bigcirc	**
			•	


*Wind tunnel experiments by using none-directional anemometers;

**Approximated value due to the spatial filtering of small-scale turbulence in LES

1/2

Mathematical Relationship Among Mean Speeds

 \succ The relationship showed below is existed among various mean speeds.

•
$$V_{ms}^2 - V_{mv}^2 = \langle s \rangle^2 - 2K = 2k - \langle (s')^2 \rangle$$
, $\langle (s')^2 \rangle \ge 0$

•
$$V_{ms} = (V_{mv}^2 + 2k - \langle (s')^2 \rangle)^{0.5} \le (V_{mv}^2 + 2k)^{0.5} = V_{es}$$

•
$$V_{ms} - V_{mv} = \langle \|\boldsymbol{u}\| \rangle - \|\langle \boldsymbol{u} \rangle\| \ge 0$$

•
$$V_{mv} \le V_{ms} \le V_{es}$$
 or $2K \le \langle s \rangle^2 \le 2K + 2k = \langle s^2 \rangle$

 $\succ V_{ms}$ locates between V_{mv} and V_{es} , different from either of them. If $R_{sk} \equiv \langle (s')^2 \rangle / 2k$ is defined, the relationship showed below is tenable.

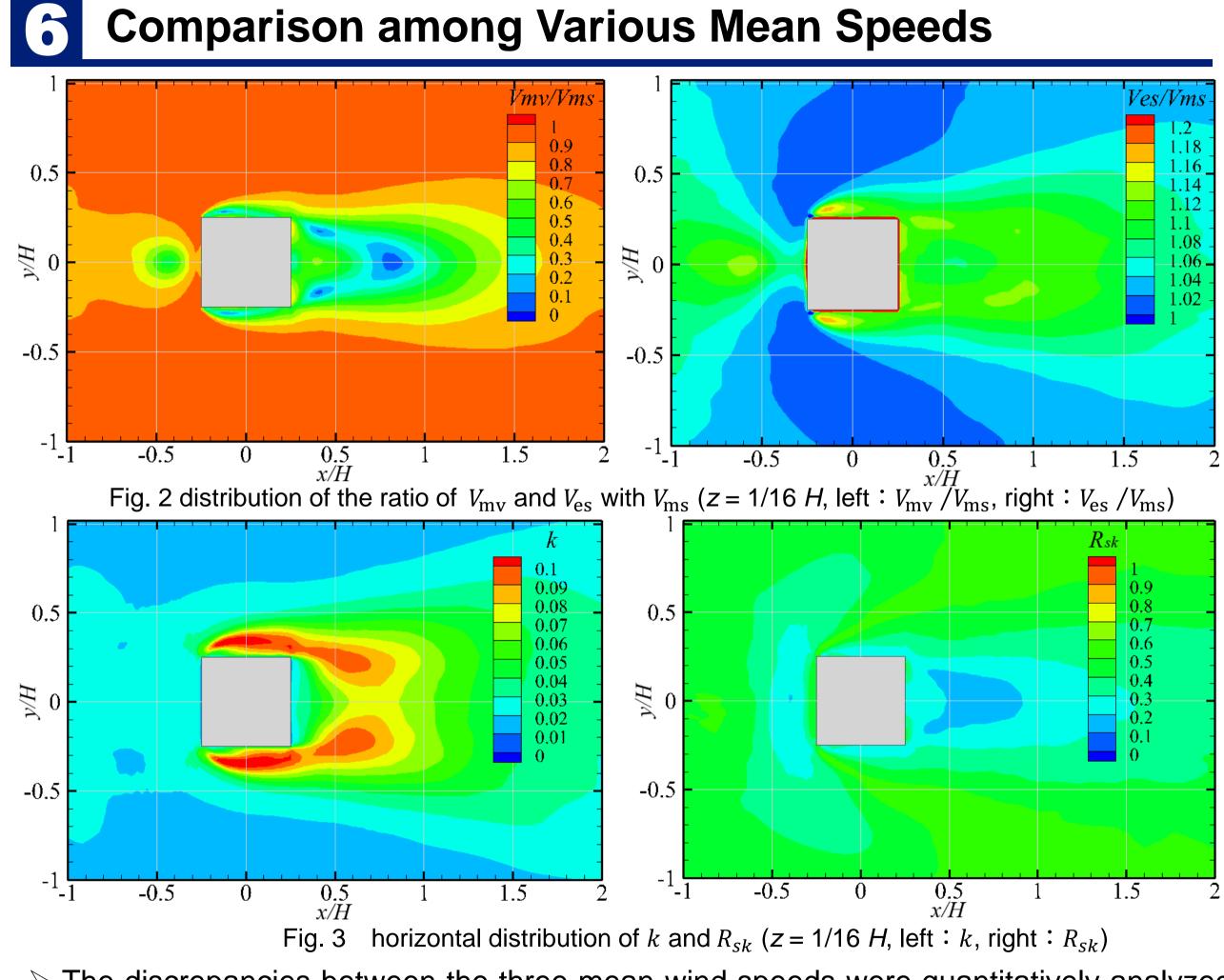
•
$$0 \le R_{sk} \le 1$$

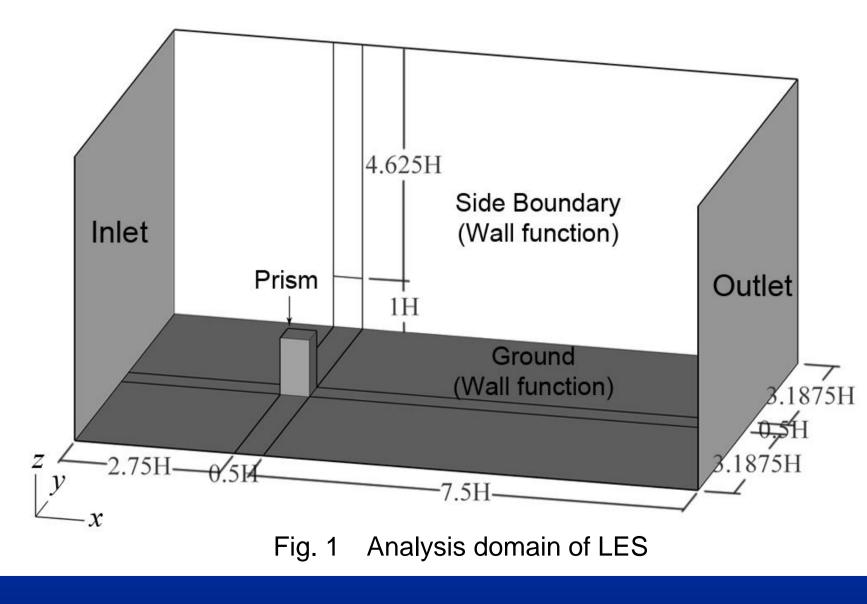
Geometrical Relationship Among Mean Speeds

experiments or RANS type CFD during wind environment evaluation. However, the mean wind speeds' definitions are distinctive on the basis of methods.

加藤研究室・大岡研究室・菊本研究室

Kato Lab., Ooka Lab., and Kikumoto Lab.


 \blacktriangleright The relationship $V_{\rm mv} \leq V_{\rm ms} \leq V_{\rm es}$ has been shown by analysis of the various mean wind speeds based on different definitions.


Study on consistency of "mean wind speed" in wind environment analyses Part 2

Comparison of mean wind speeds in flow around single building model

Model & Boundary of Simulation

Table 1	Simulation Boundary
Model	LES, Smagorinsky model(C _s =0.12)
Wind Field	10.75 H (x)×6.875 H (y)×5.625 H (z)
Mesh	Minimum: 1/64 H, Quantity: 3.8 million
Time step · marching	0.001 s, PISO
Time discretization	Euler-implicit
Space discretization	2 nd -order central difference
Inflow B.C.	Inflow turbulence data obtained from an additional LES which simulated urban boundary layer flow in a wind tunnel
Outflow B.C.	Gradient-zero
Wall B.C.	Wall function(Spalding's law)

> The discrepancies between the three mean wind speeds were quantitatively analyzed by LES of flow around a building in an urban boundary layer. In the vicinity of the ground surface, the difference between the mean wind speeds became larger in the recirculation flow near the building's windward corners and in the wake of the building.

2/2

加藤研究室 ・大岡研究室・菊本研究室 Kato Lab., Ooka Lab., and Kikumoto Lab.