Sensitivities Analyses of Atmospheric Radiocesium Simulation based on Atmospheric Concentration and Deposition

Yu Morino (morino.yu@nies.go.jp)¹, Toshimasa Ohara¹, Haruo Tsuruta², Yasuji Oura³, Mitsuru Ebihara³, and Teruyuki Nakajima² (¹National Institute for Environmental Studies, ²University of Tokyo, ³Tokyo Metropolitan University)

International Workshop on Dispersion and Deposition Modeling for Nuclear Accident Releases
-Transfer of science from academic to operational models-Fukushima University, 2 Mar 2015
Acknowledgments: We acknowledge Y. Katsumura and M. Ishimoto in the University of Tokyo for supporting the measurements of ¹³⁷Cs
concentrations.

CONTENTS of this talk

✓ INTRODUCTION

- ✓ Activities of atmospheric modelers
- ✓ Current research themes

✓ METHODOLOGY

- ✓ Observations (depositions/concentrations)
- ✓ Modelling

UNCERTAINTY ANALYSES of atmospheric models

- ① <u>Source term</u> scenarios
- 2 Wet deposition modules
- ③ <u>Meteorological</u> schemes

ACTIVITIES of atmospheric modelers after the Fukushima accident

✓ <u>Forecast</u> of radioactive plumes [SPEEDI and other models]

✓ Inverse analysis of radionuclides' release rates

[e.g., Chino et al., 2011; Stohl et al., 2012; TEPCO, 2012]

✓ Understanding of <u>radionuclides' behaviors</u>

[e.g., Katata et al., 2012; Morino et al., 2011; Takemura et al., 2011]

Provide deposition data to land/ocean modelers
 [e.g., Tsumune et al., 2013; Kobayashi et al., 2013]

Estimate of public radiation exposure
 [e.g., Ten Hoeve et al., 2012; Itubo et al., 2013]

Support of revision of disaster prevention plan
 [Japanese local governments, including Hyogo prefecture (2013)]

ATMOSPHERIC SIMULATIONS of radionuclides after the

Fukushima accident (within half a year)

1e-09

1e - 08

1e-07

1e-06

1e-05 0.000

0.00

Current **RESEARCH THEMES** of atmospheric modelers after the Fukushima accident

- ✓ Refinement of <u>release rate</u> estimation
- ✓ **Model inter-comparison** for model evaluation
- ✓ <u>Uncertainty analyses</u> of atmospheric models
- ✓ Reproduction of initial radionuclides' fields
- ✓ Estimate of <u>re-suspension from ground</u>

Current **RESEARCH THEMES** of atmospheric modelers after the Fukushima accident

✓ Refinement of <u>release rate</u> estimation

✓ **Model inter-comparison** for model evaluation

✓ <u>Uncertainty analyses</u> of atmospheric models

✓ Reproduction of initial radionuclides' fields OBJECTIVES of this study Evaluations of model performance in simulating both atmospheric concentrations and depositions of radiocesium.

OBSERVATIONAL DATA – atmospheric deposition

Monitoring of surface deposition (MEXT, 2011)

Aircraft monitoring over Eastern Japan (MEXT, 2011)

- Monitoring : Aug-Nov 2011
- Space of flight path: 1.8~3 km

日本原子力研究開発機構 http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/mirai/2012/1_6.html

OBSERVATIONAL DATA – atmospheric concentration

MODEL SETUPS —atmospheric simulation model

10¹⁵ 137 emission (Bq/hr) 10¹³ 10¹⁴ 10¹² 3/17 3/21 3/25 Local time (year of 2011) Process: emission, transport, deposition, and radioactive decay. Concentration/Deposition of ¹³¹I/¹³⁷Cs Dep [kBa

• Δx , Δy : 3km

Binkowski and Roselle (2003)

- Properties of ¹³⁷Cs:
 - Particles of 1µm
- Properties of ¹³¹I
 - Gas:particle = 8:2
 - Particles of 1µm
 - V_d of gas-¹³¹I: same as SO₂

MODEL SETUPS

Meteo. Model: WRF v3.1 (JMA/MSM)

- •CTM : CMAQ v4.6
- •Grid: 237 x 237 x 34
- • Δx , Δy : 3km
- •Dry dep: Wesely (1989)

•Wet dep:

Binkowski and Roselle (2003)

- Properties of ¹³⁷Cs:
 - Particles of $1\mu\text{m}$
- Properties of ¹³¹I
 - Gas:particle = 8:2
 - Particles of 1µm
 - V_d of gas-¹³¹I: same as SO₂

METHODOLOGY MODEL SETUPS —Sensitivity simulations

Table 1. Setup Parameters Used for Ten Model Simulations

simulation	emissions ^a	wet deposition ^b	particle diameter
STD	JAEA ⁷	CMAQ ¹¹	$1 \ \mu m$
EM2	NILU ²	CMAQ	$1 \ \mu \mathrm{m}$
EM3	TEPCO ³	CMAQ	$1 \ \mu \mathrm{m}$
WD2	JAEA	Scav. coeff. ⁷	$1 \ \mu m$
E2W2	NILU	Scav. coeff.	$1 \ \mu \mathrm{m}$
E3W2	TEPCO	Scav. coeff.	$1 \ \mu \mathrm{m}$
WD3	JAEA	Scav. coeff. \times 10	$1 \ \mu \mathrm{m}$
E2W3	NILU	Scav. coeff. \times 10	$1 \ \mu \mathrm{m}$
E3W3	TEPCO	Scav. coeff. \times 10	$1 \ \mu m$
DD2	JAEA	CMAQ	Kaneyasu et al. ¹⁵

METHODOLOGY Available ¹³⁷Cs SOURCE TERM

	JAEA	NILU	ΤΕΡϹΟ
Model	WSPEEDI	FLEXPART	DIANA
Scale	Local/Regional (∆x=3km)	Global	Local (∆x=1km)
ObsPoint	Eastern Japan (conc. and dep.)	World-wide (6 in Japan, 5 in N-Pacific, 12 in N-America)	Fukushima (monitoring car)
¹³⁷ Cs (PBq)	8.8	36.6	10.0
References	Terada et al., 2012	Stohl et al., 2012	<i>TEPCO</i> , 2012

RESULTS ¹³⁷Cs deposition -Sensitivity to SOURCE TERM

JAEA: Deposition patterns was generally reproduced

NILU: largely overestimated

TEPCO: large underestimation in Fukushima and different spatial patterns

141

140

140

141

142

143

142

143

¹³⁷Cs deposition —Sensitivity to **SOURCE TERM**

WET DEPOSITION modules of atmospheric models

WSPEEDI (Terada et al., JNST, 2005)

$$\frac{dQ}{dt} = -\Lambda Q \quad Q: \text{ Conc. in cloud} \\ \Lambda: \text{ Scav. coeff.}(1/\text{s})$$

 $\Lambda = A p_0^B Precipitation rate$

Q is in-cloud concentrations, A is scavenging coefficient (1/s) p_0 is precipitation rate (mm/hr) <u>A and B</u> are empirically determined parameters (A = 5.0 × 10⁻⁵ and B=0.8 for ¹³⁷Cs)

SCAVENGING COEFFICIENTS (Λ) in previous studies

$$\Lambda = A p_0^{\ B}$$
Precipitation rate

Table S1. Parameters for scavenging coefficient calculation of particles, incl

	Cases	Rain or snow	A	B
Washout (below cloud)	P1 ⁸⁵	Rain	8.40×10^{-5}	0.79
	P2 ⁸⁶	Rain	3.14×10^{-7}	0.6
	P3 ⁸⁵	Snow	8.05×10^{-5}	0.305
	P4 ^{S6}	Snow	1.60×10^{-6}	0.62
	P5 ⁸⁷	Both ^a	1.00×10^{-4}	0.8
Rainout (in cloud)	P6 ⁸⁵	Rain (conv. ^b)	3.35×10^{-4}	0.79
	P7 ^{\$5}	Rain (dyn. ^c)	8.40×10^{-5}	0.79
	P8 ^{S5}	Snow (conv.)	3.35×10^{-4}	0.79
	P9 ⁸⁵	Snow (dyn.)	8.05×10^{-5}	0.305
Both ^d	P10 ^{S2}	Both	5.00×10^{-5}	0.8
	P11 ^{S8}	Both	1.00×10^{-4}	0.8
	P12 ^{S9}	Both	8.00×10^{-5}	0.8
	P13 ^{S10}	Both	4.00×10^{-5}	1
	P14 ^{S11}	Both	3.40×10^{-5}	0.59

¹³⁷Cs deposition

—Sensitivity to **WET DEPOSITION** modules

STD: wet-dep. module in CMAQ

WD2 (wet dep. module of WSPEEDI): deposition amount is smaller and deposition areas are far from NPP

WD3 (wet dep. module of WSPEEDI: $\Lambda \times 10$): similar to standard case

RESULTS

¹³⁷Cs deposition —Sensitivity to WET DEPOSITION modules

4.98

2.21

Total deposition over land Morino et al. ES&T (2013)

RESULTS

MODEL EVALUATION using atmospheric deposition/concentration data

Best setup is different between deposition and concentration data

RESULTS

MODEL EVALUATION using atmospheric deposition/concentration data

FA2 (% of 0.5<Model/Obs<2) for concentration data

Sensitivity to wet deposition modules is very different between the two events.

MODEL RESULTS of standard simulation

Concentration of ¹³⁷Cs [Bq/m³]

Accumulated deposition of ¹³⁷Cs [Bq/m²]

RESULTS ATMOSPHERIC CONCENTRATIONS

by the standard simulation during MARCH 14-16, 2011

RESULTS **ATMOSPHERIC CONCENTRATIONS** by the standard simulation during MARCH 19-23, 2011 2011/03/19 12JST 40N 316 100 31.6 ¹³⁷Cs [Bq/m³] 10 3.2 38N 1 0.32 0.1 0.032 0.01 36N-0.0032 0.001 138E 140E 142E 144E 40

RESULTS ATMOSPHERIC CONCENTRATIONS on MARCH 15, 2011

RESULTS ATMOSPHERIC CONCENTRATIONS on MARCH 21, 2011

RESULTS Sensitivities to setups of a **METEOROLOGICAL MODEL**

	Microphysics	PBL	Surface-layer	Land-surface	Cumulus	Nudging
STD	WSM 5-class	Mellor-Yamada- Janjic (Eta) TKE	Monin-Obukhov (Janjic Eta)	unified Noah land-surface model	Grell-Devenyi ensemble	guv=2.5e-4 (PBL off)
SENS_m1	STD	STD	STD	STD	STD	OBSGRID
SENS_m2	WRF double moment, 5-class	STD	STD	STD	STD	STD
SENS_m3	STD	YSU	MM5 Monin-Obukhov	STD	STD	STD
SENS_m4	STD	ACM2 (Pleim)	MM5 Monin-Obukhov	STD	STD	STD
SENS_m5	STD	ACM2 (Pleim)	Pleim-Xiu	Pleim-Xiu	STD	STD
SENS_m6	STD	STD	STD	STD	Kain-Fritsch (new Eta)	STD
SENS_m7	STD	STD	STD	STD	Betts-Miller- Janjic	STD
SENS_m8	STD	STD	STD	STD	STD	guv=2.5e-4 (PBL on)
SENS_m9	STD	STD	STD	STD	STD	guv=2.5e-3 (PBL on)
SENS_m10	STD	STD	STD	STD	STD	guv=0.01 (PBL on)

Low sensitivity to physical modules and nudging parameters of WRF

WRF v3.3 was used (instead of WRF v3.1)

Summary

- We evaluated sensitivities of model setups (source-term, wet deposition and meteorological schemes) to simulations of atmospheric depositions and concentrations of radiocesium.
- Simulation using emissions estimated with a <u>regional-scale model</u> (JAEA) and <u>a diagnostic wet deposition module (CMAQ)</u> better reproduced the observed deposition pattern in eastern Japan.
- However, wet deposition module using <u>scavenging coefficients</u> (<u>SPEEDI</u>) better reproduced <u>observed atmospheric</u> concentrations.
- Simulated concentration was **not sensitive** to physical modules and parameterizations of a **meteorological model**.