

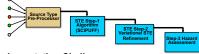
NCAR Atmospheric Transport & Dispersion Emergency Response Program

Paul E. Bieringer and Luna M. Rodriguez
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO 80301

Source Term Estimation (STE)

Scenario:

- A sensor or sensor network detects CBRN materials
- · Detection is used as source for forecast
- The initial forecast may not reflect the actual threat

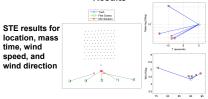


STE algorithm design constraints:

- Second-order Closure Integrated PUFF (SCIPUFF) model & Joint Effects Model (JEM) system design
- Suitable to run on a laptop (e.g. computationally efficient)
- Answer within seconds to minutes of starting the STE job

System Design

Observations


Implementation Challenges:

- · Questionable accuracies of available data
- · Inconsistencies between available observations
- Limited quantities of data

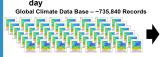

Standalone Version for STE

Results

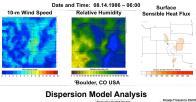
Instrument Placement

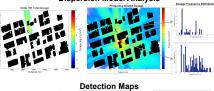
Fidelity T&D and Representative Weather Conditions

SOM configuration


Tuned for variables of interest (Winds, Surface Sensible Heat Flux, Humidity)

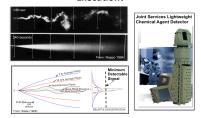
Heat Flux (200 Records

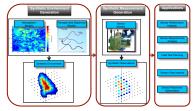

- · Randomly initialized data vector
- Set an influence radius
- Best matching unit: Euclidian


Output

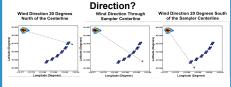
- Physically consistent patterns
- Frequency of occurrence of patterns
- Date/time for most representative

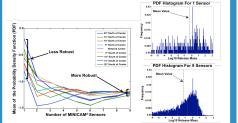
Most Frequent Weather Pattern




10° Detection Threshold 10° Detection Threshold 10° Detection Threshold 2 Agranged and a second and a seco

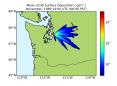
Virtual THreat Response Emulation Analysis Testbed (VTHREAT)


Can we <u>Reduce Costs</u> by Utilizing High Fidelity Simulated Releases and Sensor Observations to Better Characterize the Test Prior to Execution?


System Design

Is the Sampler Configuration Design Robust in the Face of Uncertainties in the Wind

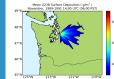
Robustness to Wind Direction Uncertainty is Related to the Spread In the Mean of the Metric PDF



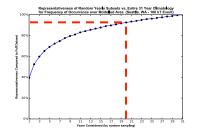
Consequence Assessment Analysis

How Much Data Do We Need For An Accurate Consequence Assessment?

- · Radioactive particle release
- Buoyant release
- Maritime complex terrain
 Daytime



November 1989



November 1980

November 1989-1991

It Takes ~20 years of Data to Achieve 95% Representativeness

