

Study of flow structure and prediction accuracy of RANS model for urban flow using PIV and LES

加藤研究室

1/3

Kato Lab., Ooka Lab., and Kikumoto Lab.

・大岡研究室

菊本研究室

PIV・LESを用いた都市気流に関する構造分析とRANSモデルの評価 LESを用いた乱流フラックスのモデル化に関する検討(中立) ■乱流エネルギーの生産構造 ■乱流エネルギー 1.5 1.5 1.5 H 0.5 − 0.5 x₃/H ζ3/Η -1.0 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1.0 1.5 -2.0 -1.0 -0.5 1.0 -1.5 0.5 $-UCL_3$ — UCL_3 --UCL 3 ------ UCL_2 ------ UCL_2 ----- UCL_2 ----- UCL 1 ----- UCL_1 ----- UCL 1 0.5 0.5 0.5 ---- UCC ---- UCC ---- UCC ---UCW 1 ---UCW_1 ---UCW_1 0.075 0.075 0.75- $-\cdot - \cdot UCW 2$ $- - UCW_2$ 0.75- $-\cdot - \cdot UCW 2$ $-\cdots$ - UCW 3 $-\cdots$ - UCW 3 $-\cdots$ - UCW_3 -0.02 0.04 0.06 -0.02 0.02 0.04 0.06 0.08 0.04 0.06 0.08 0 0.02 0.08 0 -0.02 0.02 -1.0 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1.0 x₁/H -2.0 -1.5 -1.0 -0.5 $P_k(H/<u_1>_{(2H)}^3)$ $P_k(H/<u_1>_{(2H)}^3)$ $P_k(H/<u_1>_{(2H)}^3)$ 1.5 1.5 1.5--- Conv \rightarrow Prod. \rightarrow Diff. x₃/Η x₃/H (3/H \rightarrow Diss. — UCL_3 — UCL_3 — UCL_3 Resi ------ UCL_2 ------ UCL_2 ------ UCL_2 ----- UCL_1 ----- UCL 1 ----- UCL_1 0.5 ---- UCC 0.5 0.5 ---- UCC ---- UCC --- Conv \rightarrow Conv. $---UCW_1$ ---UCW 1 ---UCW_1 \rightarrow Prod. \rightarrow Prod. $- \cdot - \cdot UCW_2$ $-\cdot - \cdot UCW 2$ $-\cdot - \cdot UCW_2$ \rightarrow Pre-S. $-\Box$ - Pre-S $-\cdots$ - UCW 3 $-\cdots$ - UCW 3 $-\cdots$ - UCW_3 \rightarrow Diff. \rightarrow Diff. \rightarrow Diss. -0.02 0 0.02 0.04 0.06 0.08-0.02 \rightarrow Diss. 0.02 0.04 0.06 0.08-0.02 0.04 $P_k(H/<u_1>_{(2H)}^3)$ $P_k(H/<u_1>_{(2H)}^3)$ $P_k(H/<u_1>_{(2H)}^3)$ Resi. Case AR0.5 Case AR1.0 Case AR0.25 -0.02 0 0.02 0.04 -0.02 -0.04 -0.02 0 0.02 -0.04 0.02 都市キャニオンにおける乱流エネルギーの生産項 Budget of Reynolds stress <u_1'u_3'> Budget of Reynolds stress $\langle u_1 | u_3 \rangle$ Budget of Reynolds stress $\langle u_1 | u_3 \rangle$ transport equation transport equation transport equation (上段:LES,下段:k-*c*モデル) 都市キャニオンにおけるレイノルズストレスの収支構造 k- *e* モデルではLESと比較して都市キャニオン上端における (左:Case AR1.0, 中:Case AR0.5, 右:Case AR0.25)

Study of flow structure and prediction accuracy of RANS model for urban flow using PIV and LES

乱流エネルギーの生産が十分に再現されなかった。

Study of flow structure and prediction accuracy of RANS model for urban flow using PIV and LES

	<u>※大気女正度</u>				
		Case SU	Case WU	Case WS	Case SS
	大気安定度	強不安定	弱不安定	弱安定	強安定
	床面温度 T ₍₀₎	78.9°C	39.7°C	20.6°C	20.5°C
	気流温度 T _(air)	19.8°C	19.0°C	38.4°C	77.6°C
	バルク リチャードソン 数	-0.3	-0.1	0.1	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	※P.。: 平均風速勾配による<(),'),'>の生産 G.。: 浮力による<(),'),'>の生産				

Kato Lab., Ooka Lab., and Kikumoto Lab.

加藤研究室・大岡研究室・菊本研究室