建築風環境における格子ボルツマン法のベンチマーク(1) 格子ボルツマン法の基礎

格子ボルツマン法とは

- ▶ 格子ボルツマン法(lattice Boltzmann method, LBM)は、流体を有限 個の速度をもつ多数の仮想粒子の集合体で近似し、さらに流体運動 を微視的な衝突と並進移動でモデル化し、その変化を逐次計算する。
- ▶ LBMは計算アルゴリズムが単純であり、並列計算に適しているため、 複雑かつ大規模な建築と市街地流れ場に関しても高速なLESが可能 となると期待される。

LBMの理論基礎

▶ LBMは、メソスケール的格子ボルツマン方程式(lattice Boltzmann equation, LBE)に基づく

$$f_a(\mathbf{r} + \delta \mathbf{e}_a, t + \delta) - f_a(\mathbf{r}, t) = \Omega[f_a(\mathbf{r}, t)]$$

▶ 緩和時間スキーム

- 単緩和時間スキーム(single relaxation time scheme, SRT) $\Omega[f_a(\mathbf{r},t)] = -\frac{1}{\tau} \left[f_a(\mathbf{r},t) - f_a^{eq}(\mathbf{r},t) \right]$
- 多緩和時間スキーム(multi relaxation time scheme, MRT)

$$\Omega[f_a(\mathbf{r},t)] = -\mathbf{M}^{-1}\mathbf{S}\mathbf{M}[f_a(\mathbf{r},t) - f_a^{eq}(\mathbf{r},t)]$$

Ω : 衝突関数 :離散速度 a の 粒子分布 関数 fa :a粒子の平衡分布関数 :緩和時間 M :分布関数をモーメントに変換する :粒子の空間位置 r ために構造された行列 :離散速度a M⁻¹: Mの逆行列 :時間 **S** : **M**に応じた緩和係数対角行列 δ :離散時間ステップ

Benchmark of the lattice Boltzmann method for built wind environment (1) Foundation of the lattice Boltzmann method

離散速度及び格子の様子

▶ 建築・都市風環境において、D319及びD3Q27離散速度スキー ムの応用が多い

Large-eddy simulationの組み込まれたLBM

- ▶ 建築環境の乱流場において、Large-Eddy Simulation (LES) が 組み込まれる
- ▶ 標準Smagorinskyモデルを用いたLBMでは、総粘性v_{total}は分 子粘性νと渦粘性ν_tの和で構成
 - LES理論による渦粘性 $v_t = (c_k \Delta)^2 |\overline{S}|$

1/4

• LBM理論による総粘性 $v_{total} = e_s^2 (\tau_{total} - 0.5) \delta$

<i>e</i> _s : 格子の音速	τ :緩和時間
δ :離散時間	c _k :Smagorinsky定数
Δ:フィルター幅	<u> </u>

 $\succ \tau_{total}$ が、LBEの中の緩和時間 τ として与えてLES解析を行う

大岡研究室・菊本研究室

Ooka Lab., and Kikumoto Lab.

室内等温流れのベンチマーク

- ▶ 2次元室内等温ベンチマークテストケースを対象 として、LESが組み込まれたLBMとFVMを実施
 - LBMの解析精度の検証
 - LBMとFVMの結果の比較

▶ LBMが室内気流解析における適用性を検討

Fig.1 Sketch of the indoor flow case

Table 1 Simulation conditions

Item	FVM-LES	LBM-LES		
Software	OpenFOAM	OpenLB		
Sub-grid scale model	standard Smagorinsky model ($C_s = 0.12$)			
Time discretization	Euler-implicit	-		
Space discretization	2 nd -order central	-		
	difference			
Lid B.C.	Uniform velocity boundary,			
Outlet B.C.	Velocity Gradient-zero, t=0.16 H			
Other B.C.	wall function	Bounce-back		
	(Spalding's law)	condition		

Fig. 3 Distribution of streamwise component of time-averaged velocity (left) and the standard deviation of fluctuating velocity (right) ▶ 室内風環境において、LBMはFVMと同様に流れ場構造と実験値を概ね再現できる。

2/4

菊本研究室

岡研究室

Ooka Lab., and Kikumoto Lab.

Benchmark of the lattice Boltzmann method for built wind environment (2) Benchmark of LBM for the indoor isolated flow

屋外等温流れのベンチマーク(1)

p

研究目的

- ▶ 3次元屋外等温ケースを対象として、LESが組み込まれたLBMと FVMを実施し、LBMが屋外気流解析における適用性を検討
 - LBMとFVMの解析精度の比較

Inlet

5.5h

• 異なる離散時間及び離散速度スキームの比較

▶ LBMとFVMの計算速度と並列計算性能の検討

Prism

解析対象およびケース設定 9.25b Side Boundary

Fig. 1 Sketch of the simulation domain

15b

2b

Table 1 Case Settings

Case Name	Calculation Method	Relaxation time scheme	Discrete velocity scheme	Mesh size
LBM_02_SRT_D3Q19	LBM-LES	SRT(BGK)	D3Q19	0.02m (1/8 b)
LBM_01_SRT_D3Q19		SRT(BGK)	D3Q19	0.01m (1/16 b)
LBM_01_SRT_D3Q27		SRT(BGK)	D3Q27	0.01m (1/16 b)
LBM_01_MRT_D3Q19		MRT	D3Q19	0.01m (1/16 b)
FVM_02	FVM-LES	_	-	0.02m (1/8 b)

Benchmark of the lattice Boltzmann method for built wind environment (3) Benchmark of lattice Boltzmann method for the outdoor isolated flow (part1)

(Wall function)

Ground

(Wall function)

Outlet

6.375b

6.375b

平均スカラー風速の結果

Fig. 2 Time-averaged scalar velocity of all cases

▶ 屋外気流において、LBMはFVMと同様な流れ場構造を概ね与えられる。

大岡研究室・菊本研究室

Ooka Lab., and Kikumoto Lab.

Benchmark of the lattice Boltzmann method for built wind environment (3) Benchmark of lattice Boltzmann method for the outdoor isolated flow (part2)

Fig. 5 Normalized computation time of all cases

▶ 同じの解析精度の場合に、LBMの 解析速度はFVMより大きい。

▶ LBMはFVMに比べてより優秀な多 コア並列計算性能概を与える。

> 大岡研究室・菊本研究室 Ooka Lab., and Kikumoto Lab.

4/4